]>
Commit | Line | Data |
---|---|---|
1 | # Forced Damped_Harmonic Oscillator | |
2 | # x'' + 2*delta*x' + omega.0^2*x = A cos (omega.f t) | |
3 | ||
4 | # generating oscillation with omega.f | |
5 | # f'' = -omega.f^2*f | |
6 | coefficient.1(-1) -> -f0 # amplitude | |
7 | coefficient.2 -> omega^2 | |
8 | iintegrate f'' -> -f' | |
9 | iintegrate -f' -> f | |
10 | IC: -f0 | |
11 | cmultiply f, omega^2 -> omega^2*f | |
12 | invert omega^2*f -> -omega^2*f | |
13 | assign -omega^2*f -> f'' | |
14 | invert f -> -f | |
15 | output f -> y | |
16 | ||
17 | # forced damped harmonic oscillation | |
18 | # x'' = -(2*delta*x' + omega.0^2*x) + A cos (omega.f t) | |
19 | coefficient.5(-1) -> -x0 # amplitude of oscillation | |
20 | coefficient.6 -> 2*delta # attenuation | |
21 | coefficient.7 -> omega.0^2 # Eigenfrequency of this oscillator, ^2 | |
22 | ||
23 | iintegrate x'' -> -x' | |
24 | invert -x' -> x' | |
25 | cmultiply x', 2*delta -> 2*delta*x' | |
26 | ||
27 | iintegrate -x' -> x | |
28 | IC: -x0 | |
29 | cmultiply x, omega.0^2 -> omega.0^2*x | |
30 | isum 2*delta*x', omega.0^2*x, -f -> -(2*delta*x'+omega.0^2*x)-f | |
31 | assign -(2*delta*x'+omega.0^2*x)-f -> x'' | |
32 | ||
33 | output(x) -> x |